翻訳と辞書
Words near each other
・ Parameter space
・ Parameter validation
・ Parameter Value Language
・ Parameterized complexity
・ Parameterized macro
・ Parameterized post-Newtonian formalism
・ Parameters (journal)
・ Paramethadione
・ Paramethasone
・ Parametopides
・ Parametric
・ Parametric animation
・ Parametric array
・ Parametric chassis
・ Parametric contract
Parametric derivative
・ Parametric design
・ Parametric determinism
・ Parametric equation
・ Parametric family
・ Parametric insurance
・ Parametric Landscapes
・ Parametric model
・ Parametric oscillator
・ Parametric polymorphism
・ Parametric process (optics)
・ Parametric programming
・ Parametric statistics
・ Parametric Stereo
・ Parametric surface


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Parametric derivative : ウィキペディア英語版
Parametric derivative

Parametric derivative is a derivative in calculus that is taken when both the ''x'' and ''y'' variables (traditionally independent and dependent, respectively) depend on an independent third variable ''t'', usually thought of as "time".
==Example==
For example, consider the set of functions where:
:x(t) = 4t^2 \,
and
:y(t) = 3t. \,
The first derivative of the parametric equations above is given by:
:\frac}} = \frac,
where the notation \dot(t) denotes the derivative of ''x'' with respect to ''t'', for example. To understand why the derivative appears in this way, recall the chain rule for derivatives:
:\frac = \frac \cdot \frac,
or in other words
:\frac = \frac}}.
More formally, by the chain rule:
\frac = \frac \cdot \frac
and dividing both sides by \frac gets the equation above.
Differentiating both functions with respect to ''t'' leads to
:\frac = 8t
and
:\frac = 3,
respectively. Substituting these into the formula for the parametric derivative, we obtain
:\frac = \frac} = \frac,
where \dot and \dot are understood to be functions of ''t''.
The second derivative of a parametric equation is given by
:
|= \frac\left(\frac\right)
|-
|
|=\frac\left(\frac\right)\cdot\frac
|-
|
|= \frac\left(\frac}\right)\frac\ddot - \dot\ddot}
|}
by making use of the quotient rule for derivatives. The latter result is useful in the computation of curvature.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Parametric derivative」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.